Para calcular o eixo de simetria de um polinômio de segunda ordem na forma ax2 + bx +c (uma parábola), use a fórmula x = -b / 2a.
O eixo de simetria é a reta na qual é possível refletir a parábola; esse é o eixo de simetria, é o reflexo do lado esquerdo ao longo do eixo de simetria. O mesmo ocorre se for uma parábola com abertura para baixo.
Por exemplo, a função f: IR IR definida por f(x)=x2 é uma função par, pois f(x)=x2=(-x)2=f(-x). Podemos notar a paridade dessa função observando o seu gráfico: Notamos no gráfico que existe uma simetria em relação ao eixo vertical. Elementos simétricos têm a mesma imagem.
Outra forma de verificar se uma função é ímpar é a seguinte: para que uma função seja ímpar é preciso que f(-x) = -f(x), então se for dada a seguinte função f(x) = 5x, basta testar se ela seria par. f(-x) = -f(x), dizemos que essa função é uma função ímpar. Compartilhe!
O conjunto imagem da função é um subconjunto do contradomínio formado por todos os elementos correspondentes de algum elemento do domínio. Exemplo 1: Encontre a imagem da função f(x) = x² f: R → R: ... Im(f) = R+ (conjunto dos números reais positivos).