Primeiro se resolvem as expressões dentro das chaves, depois colchetes e, em seguida, parênteses. Além disso, dentro dessas expressões, a seguinte ordem prevalece: expoentes, multiplicação, divisão, adição e subtração. Caso a expressão seja simplificada fora dessa ordem, a conta pode dar errado.
Para resolver as expressões numéricas utilizamos alguns procedimentos: Se em uma expressão numérica aparecer as quatro operações, devemos resolver a multiplicação ou a divisão primeiramente, na ordem em que elas aparecerem e somente depois a adição e a subtração, também na ordem em que aparecerem.
Uma expressão em que o número é cancelado é 32/48, obtendo-se 2/3. Duas frações são equivalentes quando elas representam o mesmo valor, como por exemplo 1/2, 2/4, 3/6, 4/8, etc, todas elas representam o valor 0,5 mas podem ser escritas de formas diferentes.
Por exemplo, dada a equação:
Este texto da Índia antiga fala de um passa tempo muito popular dos matemáticos hindus da época: a solução de quebra-cabeças em competições públicas, em que um competidor propunha problemas para outro resolver. Era muito difícil a Matemática nesse período.
Ainda no século XVIII, Leonhard Euler (1707-1783) fez uso da notação atual, mas foi Gottfried Wilhelm Leibniz (1646-1716) quem criou o termo função.
A história das equações é bastante longa, ela passou a ser usada aproximadamente no ano 1650 a.C. O primeiro indício do uso de equações está relacionado, aproximadamente, ao ano de 1650 a.C., no documento denominado Papiro de Rhind, adquirido por Alexander Henry Rhind, na cidade de Luxor - Egito, em 1858.
René Descartes
Toda equação deve possuir: sinal de igualdade, primeiro e segundo membro e uma ou mais incógnitas. Podemos definir equação como uma sentença matemática que possui igualdade entre duas expressões algébricas e uma ou mais incógnitas (valores desconhecidos) que são expressadas por letras.
Mostraremos agora o gráfico e a fórmula geral de cada uma das funções listadas acima:
Como a imagem da função f é um subconjunto próprio do seu contradomínio esta função não é sobrejetiva. Dizemos que uma função é bijetiva, bijetora, biunívoca ou um a um quando ela é ao mesmo tempo injetiva (injetora) e sobrejetiva (sobrejetora).
Uma função pode ser classificada de acordo com o tipo de regra que associa os elementos do domínio aos elementos do contradomínio. Se a regra que associa o domínio ao contradomínio é um polinômio, então a função é dita uma Função polinomial. Exemplos de funções polinomiais são a função linear e a função quadrática.