Radiciação é a operação matemática inversa à potenciação. Enquanto a potenciação é uma multiplicação na qual todos os fatores são iguais, a radiciação procura descobrir que fatores são esses, dando o resultado dessa multiplicação.
A regra prática para realizar adição e subtração de radicais é a mesma, a única diferença será o operador, ou seja, a operação poderá ser de adição ou de subtração. Para somar e diminuir radicais semelhantes basta conservar o radical semelhante e realizar a adição ou subtração dos coeficientes.
Em geral, o radicando é o número sobre o qual somos questionados, e a raiz é o resultado. Nesse exemplo, estamos procurando a raiz quadrada de 4, isto é, queremos saber qual é o número que multiplicado por ele mesmo resulta em quatro.
Note que quando escrevemos um número com potência fracionária, teremos a seguinte propriedade: O numerador da potência corresponde ao expoente do número que está na base. O denominador da potência corresponde ao grau da raiz.
Quando esse expoente é uma fração, ou seja, possui numerador e denominador, devemos transformá-lo em uma raiz, isto é: Não pare agora... Tem mais depois da publicidade ;) No lado esquerdo da igualdade, temos que: a = base, n = expoente.
A propriedade 5 diz-nos que uma raiz n-ésima elevada a um determinado expoente m é igual à raiz n-ésima do radicando elevado ao expoente. Quando nos depararmos com uma raiz de outra raiz, basta conservar o radicando e multiplicar os índices das raízes.
an = a·a·a·... ·a, em que a repete-se n vezes. O resultado de um produto entre duas potências de bases iguais será uma terceira potência, na qual a base será igual às bases das potências que foram multiplicadas, e o expoente será igual à soma dos expoentes dessas potências.
Para reduzir as potências de uma expressão para apenas uma potência, devemos trabalhar com as propriedades da potenciação. Primeiramente, temos a propriedade da multiplicação, onde somamos os expoentes. De maneira análoga, temos a propriedade da divisão, onde subtraímos os expoentes de mesma base.