EQST

Dois triangulos são semelhantes. os lados do primeiro triangulo medem 6 dm, 8,5 dm e 12,5 dm e o perimetro (2p) do segundo triangulo mede 81 dm. qual é o maior lado?

Dois triangulos são semelhantes. os lados do primeiro triangulo medem 6 dm, 8,5 dm e 12,5 dm e o perimetro (2p) do segundo triangulo mede 81 dm. qual é o maior lado? Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

Dois triangulos são semelhantes. os lados do primeiro triangulo medem 6 dm, 8,5 dm e 12,5 dm e o perimetro (2p) do segundo triangulo mede 81 dm. qual é o maior lado?


Vamos dizer que os lados de um primeiro triângulo podem ser escritos como uma tupla (6; 8.5; 12.5). Então, os lados do segundo triângulo devem ser um múltiplo disso: a(6; 8.5; 12.5) = (6a; 8.5a; 12.5a). Agora, sabemos que: L1+L2+L3=2p 6a+8.5a+12.5a=81 a(6+8.5+12.5)=81 a(27)=81 a=81/27 a=3 Então, os lados do triângulo são: (18; 25.5; 37.5). O maior lado é 37.5.