EQST

O transporte fluvial de cargas é pouco explorado no Brasil, considerando-se nosso vasto conjunto de rios navegáveis. Uma embarcação navega a uma velocidade de 26 nós, medida em relação à água do rio (use 1 nó = 0,5 m/s). A correnteza do rio, por sua vez, tem velocidade aproximadamente constante de 5,0 m/s em relação às margens. Qual é o tempo aproximado de viagem entre duas cidades separadas por uma extensão de 40 km de rio, se o barco navega rio acima, ou seja, contra a correnteza? a) 2 horas e 13 minutos. b) 1 hora e 23 minutos. c) 51 minutos. d) 37 minutos

O transporte fluvial de cargas é pouco explorado no Brasil, considerando-se nosso vasto conjunto de rios navegáveis. Uma embarcação navega a uma velocidade de 26 nós, medida em relação à água do rio (use 1 nó = 0,5 m/s). A correnteza do rio, por sua vez, tem velocidade aproximadamente constante de 5,0 m/s em relação às margens. Qual é o tempo aproximado de viagem entre duas cidades separadas por uma extensão de 40 km de rio, se o barco navega rio acima, ou seja, contra a correnteza? a) 2 horas e 13 minutos. b) 1 hora e 23 minutos. c) 51 minutos. d) 37 minutos Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

O transporte fluvial de cargas é pouco explorado no Brasil, considerando-se nosso vasto conjunto de rios navegáveis. Uma embarcação navega a uma velocidade de 26 nós, medida em relação à água do rio (use 1 nó = 0,5 m/s). A correnteza do rio, por sua vez, tem velocidade aproximadamente constante de 5,0 m/s em relação às margens. Qual é o tempo aproximado de viagem entre duas cidades separadas por uma extensão de 40 km de rio, se o barco navega rio acima, ou seja, contra a correnteza? a) 2 horas e 13 minutos. b) 1 hora e 23 minutos. c) 51 minutos. d) 37 minutos


O tempo de viagem entre as duas cidades é de aproximadamente 1 hora e 23 minutos. Temos que um nó equivale a 0,5 m/s, então a velocidade do barco em relação ao rio é de 26.0,5 = 13 m/s , já a velocidade do rio em relação a margem é de 5 m/s, logo, se o barco está viajando contra a correnteza, a velocidade do barco em relação a margem será de 8 m/s. Sabemos que 40 km equivalem a 40 mil metros, então, o tempo de viagem será de: t = 40000/8 t = 5000 s Devemos converter este valor em horas e minutos, primeiro separamos 3600 segundos que valem 1 hora e dividimos o restante por 60: 5000 – 3600 = 1400 1400/60 = 23,33 minutos O tempo de viagem é de 1 hora e 23 minutos. Resposta: B Leia mais em: /tarefa/11489622