Descubra os algarismos correspondentes às letras A, B, C e D. 1cc+bb3=aadd
Descubra os algarismos correspondentes às letras A, B, C e D. 1cc+bb3=aadd Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.
Descubra os algarismos correspondentes às letras A, B, C e D. 1cc+bb3=aadd
Seja o número um número escrito na base k e cada um dos um algarismo (lembrando que quando estamos falando de algarismos). Temos que . Considerando a base como desconhecida temos: 1cc = 1.k² + c.k + c => 1cc = k² + c(k+1) bb3 = b.k² + b.k + 3 => bb3 = 3 + bk(k+1) aadd = a.k³ + a.k² + d.k + d => aadd = ak²(k+1) + d(k+1) Substituindo isso na igualdade temos que: (k+1)(bk+c) + (k²+3) = (k+1)(ak²+d) * Como todo mundo aí tem que ser natural temos que k+1 tem que dividir k²+3 = k²+2k+1+2(1-k). Daí: Fazendo k+1 = j temos que k-1 = j-2. Daí: Portanto, para que t seja inteiro, e k+1 dividir k²+3, temos que j=1, 2 ou 4; caso contrário t seria racional, k+1 não dividiria k²+3 e não encontraríamos algarismos. Daí os possíveis valores de k, a base, são k=0, 1 ou 3, porém desses só convém k=3. Por causa do fato de k=3 temos que bb3 tem que ser reescrito como b(b+1)0, já que 3 não é um algarismo da base 3. Independente da base temos que 0+c=c, daí, observando as unidades dos números em ambos os membros da igualdade, temos que c=d . Usando isso em * temos: 4(3b+c) + 12 = 4(9a+d) => 3b+c + 3 = 9a+c => 3a = b+1 Então a única possibilidade para a e b para que ambos sejam algarismos da base 3 é a=1 e b=2 , enquanto que c=d=0, 1 ou 2 .