EQST

De acordo com modelo cosmológico de Kepler a velocidade orbital de um planeta não pode ser constante a menos que a forma de sua órbita seja degenerada. Descreva e explique a evolição temporal da velocidade orbital de um planeta ao longo de sua trajetória em torno do sol.

De acordo com modelo cosmológico de Kepler a velocidade orbital de um planeta não pode ser constante a menos que a forma de sua órbita seja degenerada. Descreva e explique a evolição temporal da velocidade orbital de um planeta ao longo de sua trajetória em torno do sol. Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

De acordo com modelo cosmológico de Kepler a velocidade orbital de um planeta não pode ser constante a menos que a forma de sua órbita seja degenerada. Descreva e explique a evolição temporal da velocidade orbital de um planeta ao longo de sua trajetória em torno do sol.


Por a massa do sol ser bem maior do que a massa dos outros planetas, a resultante centrípeta das forças que atua sobre um planeta é equivalente a força de atração gravitacional exercida pelo Sol. Admitindo que um planeta descreva um movimento circular, temos: M X v² /R = G X m X M /R² v = raiz de G X M/ R Onde G é a constante universal da gravitação, M é a massa do sol, m é a massa do planeta em questão, R é o raio da órbita (distância do planeta ao sol) e v é a velocidade orbital. Como sabemos que a órbita não é circular e sim elíptica, pode-se comprovar, por meio da fórmula acima, que a velocidade é menor durante o período de afélio e maior durante o período de perifélio.