EQST

Preciso aprender tudo sobre o sistema de equação do 1º e 2º grau

Preciso aprender tudo sobre o sistema de equação do 1º e 2º grau Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

Preciso aprender tudo sobre o sistema de equação do 1º e 2º grau


Sistema do 1º grau Um sistema de equações é formado por duas ou mais expressões, no qual o número de equações deve ser igual ao número de variáveis. Por exemplo, se uma das funções possui três variáveis: x, y e z, devemos ter três equações para que o sistema permita possíveis soluções dentro dos números reais.O sistema pode ser formado por diferentes tipos de equações. Vamos abordar os sistemas envolvendo equações do 1º e do 2º grau. O método de resolução, nesses casos, é o da substituição. Observe:Exemplo 1 Isolando y na 2ª equação:y – 2x = 0 y = 2xSubstituindo o valor de y na 1ª equação:y – x² = 2 2x – x² = 2–x² + 2x – 2 = 0 x² – 2x + 2 = 0Resolver a equação do 2º grau utilizando Bháskara: a = 1, b = 2 e c = 2∆ = b² – 4ac∆ = 2² – 4 * 1 * 2 ∆ = 4 – 8 ∆ = – 4Nesse caso, a equação não possui raízes reais e, dessa forma, não existe ponto em comum entre as equações y – x² = 2 e y – 2x = 0. Observe o gráfico referente a elas: Exemplo 2 Isolando y na 1ª equação:y – 2x = 0 y = 2xSubstituindo o valor de y na 2ª equação:y – x² = 1 2x – x² = 1–x² + 2x – 1 = 0Resolver a equação do 2º grau utilizando Bháskara: a = –1, b = 2 e c = – 1∆ = 2² – 4*(–1)*(–1)∆ = 4 – 4 ∆ = 0 Calculando o valor de y:y = 2x y = 2 * 1 y = 2A solução do sistema é o par ordenado (1, 2), no qual x = 1 e y = 2. Isso indica que, em uma situação gráfica, a reta representativa da equação do 1º grau intercepta a parábola representativa da equação do 2º grau. Veja o gráfico representativo das equações y – 2x = 0 e y – x² = 1:  Exemplo 3 Isolando y na 1ª equação:y – x = 0 y = xSubstituindo o valor de y na 2ª equação:y – x² = – 2 x – x² = – 2–x² + x + 2 = 0Resolver a equação do 2º grau utilizando Bháskara: a = –1, b = 1 e c = 2∆ = b² – 4ac∆ = 1² – 4 *(–1) * 2 ∆ = 1 + 8 ∆ = 9  Calculando o valor de y, de acordo com y = x:Quando x = –1, y = –1.Quando x = 2, y = 2. A solução do sistema são os pares ordenados (–1, –1) e (2, 2). Nessa situação, as equações y – x = 0 e y – x² = –2 possuem dois pontos em comum. Observe o gráfico: espero que ajude