Resumo. Depois de encontrar um ponto no qual o gradiente de uma função multivariável seja um vetor nulo, o que significa que o plano tangente ao gráfico é plano nesse ponto, o teste da segunda derivada parcial será uma forma de dizer se esse ponto é um ponto de máximo local, um ponto de mínimo local ou um ponto de sela ...
Em particular, os pontos no interior de um domínio de uma função de valores reais que sejam um extremo local terão a primeira derivada igual a zero ou a derivada não existirá no ponto: tais pontos são chamados de pontos críticos. No entanto, nem todos os "pontos críticos" são extremos locais.
Ponto crítico de uma função derivável f é um ponto x=c do domínio de f no qual f '(c)=0. Exemplo: f(x)=x², definida sobre [-1,2], possui x=0 como ponto crítico, pois f '(0)=0.
A Regra do múltiplo constante diz que a derivada de uma constante multiplicada por uma função é a constante multiplicada pela derivada da função. A Regra da constante diz que a derivada de qualquer função constante é sempre 0.
As derivadas determinam a inclinação da reta tangente a uma função f (x). A inclinação, que é a taxa de variação, serve para resolver os mais variados tipos de problemas matemáticos. Para determinar essa inclinação, deve-se calcular o limite, que é a definição da derivada, calculada pela equação que segue.
O sinal da derivada segunda de uma função indica a orientação da concavidade de seu gráfico. Como identificar um ponto de inflexão usando a derivada segunda ?
Essa direção é determinada pelo valor do coeficiente a dessa função: Se a > 0, a concavidade da parábola é voltada para cima. Se a < 0, a concavidade da parábola é voltada para baixo.
Se você gosta de uma técnica mais rápida e direta, o teste funciona assim: Se a derivada f'(C)=0, C é ponto crítico da função. Se a segunda derivada for positiva em C, ou seja, f''(C)>0, então C é ponto de mínimo. Se a segunda derivada for negativa em C, ou seja, f''(c)
A primeira derivada de uma função é o coeficiente angular da reta tangente ao gráfico em cada ponto onde a deriva existe, sendo assim, se a derivada segunda também existir nesses pontos, temos que. ... Se f"(x)>0 em algum ponto x de S, então o gráfico de f tem a concavidade (boca) voltada para cima nas vizinhanças de x.