Dois vetores v e w são ortogonais se o produto escalar entre ambos é nulo, isto é, v. w=0.
9.2 Ortogonalidade. ... Dizemos também que um conjunto de vetores é um conjunto ortogonal se todo par de vetores do conjunto for ortogonal. Em outras palavras, um conjunto { v → 1 , v → 2 , … , v → k } é um conjunto ortonogonal se, para qualquer escolha de índices i ≠ j , tivermos v → i ⋅ v → j = 0 .
O vetor u × v é ortogonal aos vetores u e v. Demonstraç˜ao. Para mostrar que u× v é ortogonal a u, basta mostrar que o produto escalar entre estes vetores é igual a 0.
Definição: Um conjunto de elementos em um espaço vetorial com produto interno é dito um conjunto ortogonal se quaisquer dois elementos desse conjunto são ortogonais. Um conjunto ortogonal no qual cada elemento tem norma igual a 1 é dito um conjunto ortonormal.
➢ Dizemos que dois vetores são paralelos (ou colineares) quando seus representantes tiverem a mesma direção, ou seja, se tiverem representantes sobre uma mesma reta ou sobre retas paralelas.
Quando o ângulo θ entre dois vetores V e W é reto (θ=90∘), ou um deles é o vetor nulo, dizemos que os vetores V e W são ortogonais ou perpendiculares entre si.
Em álgebra linear, o produto escalar é uma função binária definida entre dois vetores que fornece um número real (também chamado "escalar") como resultado. É o produto interno padrão do espaço euclidiano.
Para determinarmos se são ortogonais basta vermos se o produto de cada vetor com os outros vetores do conjunto vale . Como temos vetores no conjunto, repare que teremos que testar combinações. O primeiro com o segundo, o primeiro com o terceiro e o segundo com o terceiro. Opa, os vetores e não são ortogonais.
Em algebra linear, dois vetores em um Espaço vetorial de Produto interno são ortonormais se forem vetores Ortogonais e unitários. Um conjunto de vetores formam um conjunto ortonormal se todos os vetores no conjunto são mutuamente ortogonais e todos de comprimento unitário.