Para resolver uma equação do segundo grau, há vários métodos, como a fórmula de Bhaskara e a soma e produto. A raízes de uma função quadrática são os valores de x que fazem com que f(x) = 0. Sendo assim, para encontrar as raízes de uma equação do 2º grau, faremos ax² + bx + c = 0. Então, os zeros da função são {1, -3}.
Definição. Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0. Vejamos alguns exemplos de funções quadráticas: f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1.
5 ) a ) Porque vem do nome x², por isso este nome é dado para as funções do 2º grau.
A função de segundo grau, também chamada de função quadrática ou função polinomial do 2° grau, é escrita como: f(x) = ax² + bx + c. Sendo os coeficientes "a, b e c" números reais e "a" diferente de 0 (zero). O grau da função é determinado de acordo com o maior expoente que a incógnita x assume.
Raízes ou zeros da função quadrática são os valores de x para os quais tem-se f(x) = 0. Determinamos os zeros ou raízes da função, resolvendo-se a equação do 2º grau ax2 + bx + c = 0.
Neste caso, o seu gráfico será uma reta paralela ao eixo Ox. Ao passo que, quando b = 0 e a = 1 a função é chamada de função identidade. O gráfico da função f (x) = x (função identidade) é uma reta que passa pela origem (0,0). ... Por exemplo as funções f (x) = 2x e g (x) = - 3x são funções lineares.
A função quadrática consiste em um polinômio de grau 2, também chamado de polinômio de segundo grau, que pode ter uma ou mas variáveis. Ela é escrita da seguinte forma: ... Uma função quadrática é toda função que tem um coeficiente elevado ao quadrado. Portanto, somente os itens a, b, e d.
A Função Quadrática ou de 2º Grau tem várias aplicações no cotidiano. Ela serve, por exemplo, para calcular o lançamento e o movimento de projéteis como balas de canhão e foguetes, para presumir o ângulo de reflexão de faróis de carros, conjecturar o ângulo da antena parabólica, entre outras coisas.
Dizemos que uma fórmula está na forma canônica quando ela está escrita na sua forma mais simples ou que expõe algo de grande importância.
O gráfico da função quadrática é uma parábola, cuja concavidade é determinada de acordo com o valor de a. Se a > 0, a concavidade da parábola estará voltada para cima e se a < 0, a concavidade da parábola estará voltada para baixo.