O teste t pareado é útil para analisar o mesmo conjunto de itens que foram medidos sob duas condições diferentes, as diferenças nas medições feitas sobre o mesmo assunto antes e depois de um tratamento, ou diferenças entre dois tratamentos dados ao mesmo assunto.
Teste t pareado Suponha um estudo onde os indivíduos foram submetidos a uma dieta e deseja-se verificar se houve diferença entre o peso antes e depois da dieta. Nesse caso, a variável de interesse é numérica e o objetivo é verificar se existe diferença significativa dessa variável entre dois grupos de interesse.
Num estudo pareado, temos duas amostras mas cada observação da primeira amostra é pareada com uma observação da segunda amostra. Nos referimos a tal teste como um paired t-test ao contrário do test-t para duas amostras acima. ...
Amostras Independentes: Quando os elementos das amostras provêm de indivıduos distintos. Amostras Pareadas/Dependentes: Quando os elementos das amostras provêm dos mesmos indivıduos ou de indivıduos pareados.
Os dados emparelhados nas estatísticas, frequentemente chamados de pares ordenados, referem-se a duas variáveis nos indivíduos de uma população que estão ligadas entre si para determinar a correlação entre elas.
As amostras dependentes são medições pareadas para um conjunto de itens. As amostras independentes são medições feitas em dois conjuntos de itens diferentes. ... Se os valores em uma amostra afetam os valores na outra amostras, então as amostras são dependentes.
A análise de variância (ANOVA) pode determinar se as médias de três ou mais grupos são diferentes. A ANOVA usa testes F para testar estatisticamente a igualdade entre médias. ... Também mostrarei como as variâncias fornecem informações sobre as médias.
Se você não atender às orientações de tamanho amostral para os testes paramétricos e não tiver certeza de que os dados seguem uma distribuição normal, deverá usar um teste não paramétrico.
O que são testes paramétricos? Os termos paramétrico e não-paramétrico referem-se à média e ao desvio-padrão, que são os parâmetros que definem as populações que apresentam distribuição normal. Essa observação já foi feita e repetida muitas vezes neste texto.
Os testes não paramétricos, também conhecidos como testes de distribuição gratuita, são aqueles baseados em certas hipóteses, mas que nãpossuem uma organização normal. ... As hipóteses são rigorosas. As observações devem ser independentes.
a) Um conjunto de dados não paramétricos é heterogêneo, tem grande variabilidade entre os dados, não tem homocedasticidade e são assimétricos. Isso significa que não constitui uma curva normal (Gauss); portanto, dados que são assimétricos não devem ser estimados como referência populacional.
Quais dados devem ser utilizados para expressar um conjunto de dados não paramétrico? ... a) Média e desvio-padrão, porque são informações melhores e mais completas, já que consideram todos os dados do conjunto de dados.
O p-valor, também denominado nível descritivo do teste, é a probabilidade de que a estatística do teste (como variável aleatória) tenha valor extremo em relação ao valor observado (estatística) quando a hipótese H0 é verdadeira.
Testes paramétricos são uma ferramenta estatística usada para a análise de fatores populacionais. Essa amostra deve atender a determinados requisitos, como tamanho, pois quanto maior seja o tamanho da amostra, mais preciso será o cálculo. ... Os testes paramétricos baseiam-se na lei de distribuição da variável em estudo.
A maioria dos testes estatísticos supõe implicitamente uma relação de causa e efeito. Mesmo os testes em que a variável independente é qualitativa (nominal ou ordinal), como o teste t e a ANOVA. A exceção são testes como a correlação, sem premissa de causalidade.
e) Uma distribuição paramétrica é um conjunto de dados quantitativos que apresenta sua distribuição de frequências no formato de uma curva de Gauss. Tem propriedades específicas, o que permite algumas análises e limita outras.
O procedimento para se testar as hipóteses é coletar uma amostra de cada população treinada com cada uma das técnicas e verificar se as estimativas dos parâmetros são estatisticamente diferentes.
Já os testes de Wilcoxon e Mann-Whitney se apresentam como alternativas ao teste t pareado e o teste t para amostras independentes, respectivamente. Estes são utilizados nas mesmas situações descritas anteriormente, porém na presença de distribuição não normal dos dados.