It’s cold on Pluto. Very cold. During the New Horizons flyby of Pluto in 2015 we learned that the temperature is colder than previously thought, -203 ºC. Now a new paper in Nature, co-authored by SETI Institute scientist Hiroshi Imanaka and lead author, Xi Zhang, University of Santa Cruz, explains that haze is the cause of Pluto’s cold temperature.
Pluto is made up of a rocky core surrounded by ices. New Horizons revealed a very young surface, suggesting that the dwarf planet remained warm enough to host a liquid ocean within its interior.
Lying 30 to 50 times Earth's distance from the sun, Pluto is one of the coldest large bodies in the solar system. But despite the fact that it lies so far away, its temperature can shift enough over the course of its orbit to significantly impact the planet.
Con la misión Nuevos Horizontes, visitaremos y aprenderemos sobre los objetos que están en el borde de nuestro sistema solar. Puede que nos ayuden a comprender cómo se formó el sistema solar.
Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and enjoys the opportunity to learn more. She has a Bachelor’s degree in English and Astrophysics from Agnes Scott college and served as an intern at Sky & Telescope magazine. In her free time, she homeschools her four children. Follow her on Twitter at @NolaTRedd
All planets have temperature changes related to their seasons; some changes are more extreme than others. At its warmest, when it is closest to the sun, Pluto can reach temperatures of minus 369 degrees Fahrenheit (minus 223 degrees Celsius). At its coolest, temperatures can fall to minus 387 degrees F (minus 233 C).
The methane in Pluto's atmosphere is a greenhouse gas, which allows it to create inversions in which temperatures in the upper atmosphere are tens of degrees higher than temperatures at its surface.
When NASA's New Horizons mission buzzed the dwarf planet in July 2015, it revealed a thin atmosphere made up of nitrogen, methane and carbon monoxide. But the atmosphere most likely changes as Pluto orbits the sun. When the distance to Pluto from the sun is at a minimum, temperatures are warm enough for the ices to sublimate directly into gas, creating a thin atmosphere. As Pluto moves away from the sun, the gases re-freeze and the planet's atmosphere disappears from view.
"Right now, if you were standing on Titan, you wouldn't be able to see the sun," graduate student Michael Wong of the California Institute of Technology told Space.com previously. You wouldn't be able to see Saturn. You'd just see haze."
¡Puede que tengamos la oportunidad de visitar a Plutón, Caronte y el Cinturón Kuiper! La NASA está planificando enviar una nave robot en este largo viaje, y pensando en lo que hará al llegar. Si todo sale bien, esta misión, conocida como Nuevos Horizontes, partirá en enero de 2006. Llegará a Plutón en Julio año 2015, y si todo sale según los planes, se dedicará a estudiar otros objetos en el Cinturón Kuiper entre 2018 y 2022.
The Nature article, Haze heats Pluto’s atmosphere yet explains its cold temperature is available online now.
Plutón es un planeta enano que se encuentra en el cinturón de Kuiper. Es un área llena de objetos helados y otros planetas enanos en el borde de nuestro sistema solar. Debido a que Plutón es el objeto más grande conocido en esta región, algunos lo llaman "Rey del Cinturón de Kuiper".
Los astrónomos ya han nombrado otros tres objetos en el sistema solar que tienen aproximadamente el mismo tamaño pequeño que Plutón. Son Ceres, Makemake y Eris. Estos objetos, junto con Plutón, son mucho más pequeños que los "otros" planetas.
Una cosa es segura. Plutón y su vecindario son muy peculiares. Si los científicos pudieran desentrañar algunos de sus misterios, sabríamos más sobre cómo se formó nuestro sistema solar.
Pluto turns out to be a unique in that haze layers in the atmosphere control both heating and cooling. Saturn’s moon, Titan, has a similar nitrogen atmosphere and trace amounts of methane, but doesn’t behave in the same way as Pluto’s. The major difference is the total atmospheric pressure. Titan has the surface pressure of 1.5 bar, but Pluto has only at ~ 10 micro bar. Both bodies are shrouded by the global haze layers, which are generated through photochemistry of methane high in the atmospheres. While the cooling by gas species works effectively in the upper atmosphere of Titan, the haze particles almost entirely control the atmospheric radiation balance in Pluto’s thin atmosphere.
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].
The work here combines the two big discoveries by the New Horizon Mission into a synergic solution: Pluto’s atmospheric hazes maintain the very cold temperature in the upper atmosphere. This is important for affecting atmospheric escape from such a small body, i.e. the colder upper atmosphere can maintain more atmosphere.
Despite its presence in the outskirts of the solar system, the dwarf planet may bear a strong resemblance to one of the most potentially habitable bodies orbiting the sun. Saturn's moon Titan has methane rain and lakes of methane and ammonia. According to scientists, Titan may go through a "snowball" cycle, evolving from an icy world to one filled with lakes and then back to ice again.