Os vetores v 0 para os quais existe um que resolve a equação (III) são chamados de autovetores da matriz A e os valores de , que conjuntamente com v resolvem a equação são chamados de autovalores da matriz A associados aos respectivos autovetores. ... As raízes do polinômio característico são os autovalores da matriz A.
As raízes do polinômio característico são os autovalores da matriz A. Para se encontrar os autovetores basta substituir o valor do autovalor na equação original e encontrar o autovetor. O autovalor será, então, associado ao autovetor encontrado.
Uma matriz quadrada "A" é singular se, e somente se, 0 é um autovalor de A. Esta é, aliás, a principal técnica para descobrir se uma matriz é singular: , o lado esquerdo desta equação é um polinômio de grau n na variável λ, denominado polinômio característico de A. é par.
Calculando as raízes do polinômio característico de T, obtemos: p(λ)=0 ⇔ (3 - λ)(1 - λ)(2 - λ)(-1 - λ)=0 ⇔ λ = 3 ou λ = 1 ou λ = 2 ou λ = -1 Portanto, λ1 = 3, λ2 = 1, λ3 = 2 e λ4 = -1 são os autovalores do operador linear T.
Para se encontrar os autovetores basta substituir o valor do autovalor na equação original e encontrar o autovetor. O autovalor será, então, associado ao autovetor encontrado. Na verdade, o autovetor encontrado forma uma base para o espaço de solução da equação (III), dado o respectivo autovalor.
Uma matriz é singular se e somente se seu determinante é nulo. Por exemplo, se uma matriz quadrada tiver pelo menos uma linha ou coluna nula, terá determinante zero (0), o que caracteriza uma matriz singular.